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A grid-free variant of the Direct Simulation Monte Carlo (DSMC) method is proposed,

named the Isotropic DSMC (I-DSMC) method, that is suitable for simulating collision-

dominated dense fluid flows. The I-DSMC algorithm eliminates all grid artifacts from the

traditional DSMC algorithm and is Galilean invariant and microscopically isotropic. The

stochastic collision rules in I-DSMC are modified to introduce a non-ideal structure factor

that gives consistent compressibility, as first proposed in [Phys. Rev. Lett. 101:075902

(2008)]. The resulting Stochastic Hard Sphere Dynamics (SHSD) fluid is empirically shown

to be thermodynamically identical to a deterministic Hamiltonian system of penetrable

spheres interacting with a linear core pair potential, well-described by the hypernetted chain

(HNC) approximation. We develop a kinetic theory for the SHSD fluid to obtain estimates

for the transport coefficients that are in excellent agreement with particle simulations over

a wide range of densities and collision rates. The fluctuating hydrodynamic behavior of

the SHSD fluid is verified by comparing its dynamic structure factor against theory based

on the Landau-Lifshitz Navier-Stokes equations. We also study the Brownian motion of a

nano-particle suspended in an SHSD fluid and find a long-time power-law tail in its veloc-

ity autocorrelation function consistent with hydrodynamic theory and molecular dynamics

calculations.

With the increased interest in nano- and micro-fluidics, it has become necessary to develop

tools for hydrodynamic calculations at the atomistic scale [1, 2]. There are several issues present

in microscopic flows that are difficult to account for in models relying on the continuum Navier-

Stokes equations. Firstly, it is complicated to deal with boundaries and interfaces in a way that

consistently accounts for the bidirectional coupling between the flow and (moving) complex surfaces

or suspended particles. Furthermore, it is not trivial to include thermal fluctuations in Navier-

Stokes solvers [3–5], and in fact, most of the time the fluctuations are not included even though

they can be very important at instabilities [6] or in driving the dynamics of suspended objects

[7, 8]. Finally, since the grid cell sizes needed to resolve complex microscopic flows are small, a

large computational effort is needed even for continuum solvers. An alternative is to use particle-

based methods, which are explicit and unconditionally stable and rather simple to implement. The
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fluid particles are directly coupled to the microgeometry, for example, they directly interact with

the beads of a polymer chain. Fluctuations occur naturally and the algorithm is designed to give

the correct spatio-temporal correlations.

Several particle methods have been described in the literature. The most accurate but also

most expensive is molecular dynamics (MD) [9], and several coarse-grained models have been de-

veloped, such as dissipative particle dynamics (DPD) [10] and multi-particle collision dynamics

(MPCD) [11, 12], each of which has its own advantages and disadvantages [13]. Our method, first

proposed in Ref. [14], is based on the Direct Simulation Monte Carlo (DSMC) algorithm of Bird

[15]. The key idea behind DSMC is to replace deterministic interactions between the particles

with stochastic momentum exchange (collisions) between nearby particles. While DSMC is usually

viewed as a kinetic Monte Carlo algorithm for solving the Boltzmann equation for a low-density

gas, it can also be viewed as an alternative to the expensive MD in cases where an approximate

(coarse-grained) treatment of the molecular transport is appropriate. The stochastic treatment

of collisional treatment makes the algorithm much simpler and faster than MD, while preserv-

ing the essential ingredients of fluctuating hydrodynamics: local momentum conservation, linear

momentum exchange on length scales comparable to the particle size, and a similar fluctuation

spectrum.

Being composed of point particles, the DSMC fluid has no internal structure, has an ideal gas

equation of state (EOS), and is thus very compressible. As a consequence, the density fluctuations

in DSMC are significantly larger than those in realistic liquids. Furthermore, the speed of sound

is small (comparable to the average speed of the particles) and thus subsonic (Mach number less

than one) flows are limited to relatively small Reynolds numbers1. Efforts have been undertaken to

develop coarse-grained models that have greater computational efficiency than brute-force MD and

that have a non-ideal EOS, such as the Lattice-Boltzmann (LB) method [16], DPD [17], MPCD

[18, 19]. The Consistent Boltzmann Algorithm (CBA) [20, 21], as well as algorithms based on the

Enskog equation [22, 23], have demonstrated that DSMC fluids can have dense-fluid compressibility,

however, they did not achieve thermodynamic consistency between the equation of state and the

fluid structure.

In this paper we describe a generalization of the traditional DSMC algorithm suitable for dense

1 For a low-density gas the Reynolds number is Re = M/K, where M = vflow/c is the Mach number, and the
Knudsen number K = λ/L is the ratio between the mean free path λ and the typical obstacle length L. This
shows that subsonic flows can only achieve high Re flows for small Knudsen numbers, i.e., large numbers of DSMC
particles.
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fluid flows. By a dense fluid we mean a fluid where the mean free path is small compared to the

typical inter-atomic distance. As a first step, we introduce a grid-free Isotropic DSMC (I-DSMC)

method that eliminates all grid artifacts from traditional DSMC, notably the lack of Galilean

invariance and non-isotropy. The I-DSMC fluid is still an ideal fluid just like the traditional

DSMC fluid, that is, it has an the equation of state of an ideal gas and does not have an internal

structure as do liquids. Secondly, by biasing the collision kernel in I-DSMC to only allow stochastic

collisions between approaching particles, we obtain the Stochastic Hard-Sphere Dynamics (SHSD)

algorithm that is thermodynamically consistent (i.e., the direct calculation of compressibility from

density fluctuations agrees with the density derivative of pressure). The SHSD algorithm is related

to previous algorithms for solving the Enskog kinetic equation [22, 23], and can be viewed as a

more-efficient variable-diameter stochastic modification of the traditional hard-sphere molecular

dynamics [24].

In the SHSD algorithm randomly chosen pairs of approaching particles that lie less than a

given diameter of each other undergo collisions as if they were hard spheres of diameter equal to

their actual separation. The SHSD fluid is shown to be non-ideal, with structure and equation

of state equivalent to that of a fluid mixture where spheres effectively interact with a repulsive

linear core pairwise potential. We theoretically demonstrate this correspondence at low densities.

Remarkably, we numerically find that this effective interaction potential, similar to the quadratic

core potential used in many DPD variants, is valid at all densities. Therefore, the SHSD fluid,

as DPD, is intrinsically thermodynamically-consistent, while non-ideal MPCD is only numerically

thermodynamically-consistent for tuned choices of the parameters [18, 19].

The equivalence of the structure of the SHSD fluid with the linear core penetrable-sphere fluid

enables us to use the Hypernetted Chain (HNC) approximation, as recommended in Ref. [25], to

obtain theoretical estimates for the pair correlation and static structure factors that are in excellent

agreement with the numerical results. These further enable us to use the Enskog-like kinetic theory

developed in Ref. [26] to obtain excellent theoretical estimates of the transport properties of the

SHSD fluid that are also shown to be in excellent agreement with numerics even at relatively high

densities. This makes the SHSD fluid a rare example in which such simple but accurate theoretical

estimates can be obtained.

We numerically demonstrate that the hydrodynamics of the SHSD fluid is consistent with the

equations of fluctuating hydrodynamics when the appropriate equation of state taken into account.

Specifically, we compare the dynamic structure factor with that obtained from the linearized fluc-

tuating Navier-Stokes equations. We also calculate the velocity autocorrelation function (VACF)
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for a large hard-sphere bead suspended in an SHSD fluid, demonstrating the existence of long-time

tails as predicted by hydrodynamics and found in molecular dynamics simulations. The tail is

found to be in quantitative agreement with theory at lower densities, but a discrepancy is found

at higher densities, possibly due to the strong structuring of the SHSD fluid.

We begin by introducing a grid-free variant of the DSMC algorithm in Section I. This Isotropic

DSMC algorithm simulates a stochastic particle system where particles closer than a particle di-

ameter collide with a certain rate. By biasing the collision kernels to favor head-on collisions of

particles, as in the hard-sphere fluid, we obtain a non-ideal stochastic fluid in Section II. We de-

velop an Enskog-like kinetic theory for this Stochastic Hard Sphere Dynamics (SHSD) system in

Section IIA, which requires as input the pair correlation function. In Section II B we discover that

the SHSD fluid is thermodynamically consistent with a fluid of penetrable linear core spheres, and

use this equivalence to compute the pair correlation function of the SHSD fluid using the HNC

approximation. In Section III we show several results, including a comparison between theory and

numerics for the transport coefficients and for the dynamic structure factor, as well as a study of

the hydrodynamic tails in the velocity autocorrelation of a bead suspended in an SHSD fluid.

I. ISOTROPIC DSMC

The traditional DSMC algorithm [15] starts with a time step where particles are propagated

advectively, r
′
i = ri + vi∆t, and sorted into a grid of cells. Then, a certain number Ncoll ∼

ΓscNc(Nc − 1)∆t of stochastic collisions are executed between pairs of particles randomly chosen

from the Nc particles inside the cell, where the collision rate Γsc is chosen based on kinetic theory.

The conservative stochastic collisions exchange momentum and energy between two particles i

and j that is not correlated with the actual positions of the particles. Typically the probability

of collision is made proportional to the magnitude of the relative velocity vr = |vij | by using a

conventional rejection procedure.

Traditional DSMC suffers from several grid artifacts, which become pronounced when the mean

free path becomes comparable to the DSMC cell size. Firstly, the method is not Galilean invari-

ant unless the grid of cells is shifted randomly before each collision step, as typically done in the

MPCD/SRD algorithm [11, 12] for the same reason. This shifting is trivial in a purely parti-

cle simulation with periodic boundary conditions, but it causes implementation difficulties when

boundaries are present and also in particle-continuum hybrids. Furthermore, traditional DSMC,

unlike MD, is not microscopically isotropic and does not conserve angular momentum, leading to
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an anisotropic stress tensor. Instead of trying to work around these grid artifacts, as done for

MPCD in Refs. [18, 19], we have chosen to modify the traditional DSMC algorithm to make it

grid-free.

To ensure isotropy, all particle pairs within a collision diameter D (i.e., overlapping particles if

we consider the particles to be spheres of diameter D) are considered as potential collision partners

even if they are in neighboring cells. In this way, the grid is only used as a tool to find neighboring

particles efficiently, but does not otherwise affect the properties of the resulting stochastic fluid.

Such a grid-free DSMC variant, which we will call the Isotropic Direct Simulation Monte Carlo

(I-DSMC) method, is suitable for hydrodynamics of dense gases (where the mean free path is

comparable or even smaller than D), unlike the original DSMC which targets the dilute limit. It is

important to point out, however, that the I-DSMC is not meant to be a replacement for traditional

DSMC for rare gas flows. In particular, the computational efficiency is reduced by a factor of

2 − 4 over traditional DSMC due to the need to search neighboring cells for collision partners in

addition to the current cell. This additional cost is not justified at low densities, where the grid

artifacts of traditional DSMC are small. Furthermore, the I-DSMC method is not intended as

a solver for the Boltzmann equation, which was the primary purpose of traditional DSMC [27].

Rather, in the limit of small time steps, the I-DSMC method simulates the following stochastic

particle system: Particles move ballistically in-between collisions. While two particles i and j

are less than a diameter D apart, rij ≤ D, there is a probability rate χD−1Kc(vij , rij) for them

to collide and change velocities without changing their positions, where Kc is some function of

the relative position and velocity of the pair, and the dimensionless cross-section factor χ sets

the collisional frequency. After the collision, the pair center-of-mass velocity does not change,

ensuring momentum conservation, while the relative velocity is drawn from a probability density

Pc(v
′
ij ;vij , rij), such that energy is conserved,

∥∥∥v
′
ij

∥∥∥ = ‖vij‖.

Once the pre- and post-collision kernels Kc and Pc are specified, the properties of the resulting

I-DSMC fluid are determined by the cross-section factor χ and the density (hard-sphere volume

fraction) φ = πND3/(6V ), where N is the total number of particles in the simulation volume

V . Compare this to the deterministic hard-sphere fluid, whose properties are determined by the

volume fraction φ alone. It is convenient to normalize the collision kernel Kc so that for an ideal

gas with a Maxwell-Boltzmann velocity distribution the average collisional rate would be χ times

larger than that of a gas of hard spheres of diameter D at low densities, φ � 1. Two particular

choices for the collision kernels which we use in practice are:
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Traditional DSMC collisions (Traditional I-DSMC ideal fluid), for which the probability of colli-

sion is made proportional to the magnitude of the relative velocity vrel = ‖vij‖, Kc = 3vrel/4.

The post-collisional relative velocity is randomized so as to mimic the average distribution of

collision impact parameters in a low-density hard-sphere gas, specifically, in three dimensions

the relative velocity is rotated uniformly independent of rij [15]. We use this fluid mainly

for comparison with traditional DSMC.

Maxwell collisions (Maxwell I-DSMC ideal fluid), for which Kc = 3
√

kBT0/m/(2
√

π) independent

of the relative velocity, where T0 is an equilibrium temperature. For simplicity, the post-

collisional relative velocity is randomly rotated as in classic DSMC. This kernel is not realistic

and may lead to unphysical results in cases where there are large density and temperature

gradients, however, it is computationally most efficient since there is no rejection based

on relative velocity. We therefore prefer this kernel for problems where the temperature

dependence of the transport properties is not important, and what we will typically mean

when we say I-DSMC without further qualification.

With a finite time step, the I-DSMC method can be viewed as a time-driven kinetic Monte Carlo

algorithm for solving the Master Equation that describes the stochastic particle system. Unlike the

Boltzmann equation, this Master Equation has a mollified collision kernel with a finite compact

support D [26, 28], unlike the singular kernel in the Boltzmann equation. The traditional DSMC

method also mollifies the collision kernel by considering particles within the same cell of size Lc as

collision partners. This cell Lc however has nothing to do with the actual molecular diameter σ, in

fact, for low densities it is typically much larger than σ, but still smaller than the mean free path.

The molecular properties enter in traditional DSMC only in the form of collisional cross-sections

∼ σ2. In light of this, for rare gas flows, the collision diameter D in I-DSMC should be considered

the equivalent of the cell length Lc, and not σ. Traditional DSMC is designed to reproduce a

collision rate per particle per unit time equal to the Boltzmann rate, ΓB(σ) = Cσ2, where C is a

constant independent of σ. The I-DSMC method is designed to reproduce a collision rate

ΓI−DSMC = χΓB(D) = χCD2,

and therefore by choosing

χ = χB =
( σ

D

)2

we get ΓI−DSMC = ΓB(σ). Therefore, if I-DSMC is used as a replacement for traditional DSMC

in order to simulate the transport in a low-density gas of hard-sphere of diameter σ, the collision
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diameter D should be chosen to be some fraction of the mean free path (say, D ≈ λ/4 � σ),

and the cross-section prefactor set to χB ∼ (σ/λ)2 � 1. At higher densities χB starts becoming

comparable to unity and thus it is no longer possible to separate the kinetic and collisional time

scales as assumed in traditional DSMC.

A. Performing Stochastic Collisions

In I-DSMC, stochastic collisions are processed at the end of every particle time step of duration

∆t, and in-between collisions each particle i is streamed advectively with constant velocity vi.

At the end of each time step, we need to randomly and without bias choose pairs of overlapping

particles for collision, given the current configuration of the system. This can be done, as in

traditional DSMC, using a rejection Monte Carlo technique. Specifically, we need to choose a large

number N
(tot)
tc = Γ(tot)

tc Npairs∆t of trial collision pairs, and then accept the fraction of them that

are actually overlapping as collision candidates. Here Npairs is the number of possibly-overlapping

pairs, for example, as a first guess one can include all pairs, Npairs = N(N−1)/2. If the probability

of overlap for one of the trial pairs is pgeom, then pgeomNpairs candidate collisions will be accepted,

and thus the probability for choosing one of the overlapping pairs as a collision candidate is simply

Γ(tot)
tc ∆t. If the probability of accepting a candidate pair ij for an actual collision is p

(acc)
ij and ∆t

is sufficiently small, then the probability rate to actually collide i and j while they are overlapping

approaches Γij = p
(acc)
ij Γ(tot)

tc . The goal is to choose the trial collision frequency Γ(tot)
tc and p

(acc)
ij

such that Γij = χD−1Kc(vij , rij).

The efficiency of the algorithm is increased if the probability of accepting trial collisions is

increased. In order to increase pgeom, one should reduce Npairs to be closer to the number of

actually overlapping pairs (making Npairs linear instead of quadratic in N), ideally, one would

build a list of all the overlapping pairs. This is however expensive, and a reasonable compromise is

to use collision cells similarly to what is done in classical DSMC and also MD algorithms. Namely,

the spatial domain of the simulation, typically a unit periodic cell, is divided into cells of length

Lc ' D, and for each cell a linked list Lc of all the particles in that cell is maintained. All

pairs of particles that reside in the same or neighboring cells are considered as potential collision

partners, and here we include the cell itself in its list of neighboring cells, i.e., each cell has 3d

neighbors, where d is the spatial dimension. To avoid any spatial correlations (inhomogeneity and

non-isotropy), trial collision pairs should be chosen at random one by one. This would require

first choosing a pair of neighboring cells with the correct probability, and then choosing a particle
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from each cell (rejecting self-collisions). This is rather expensive to do, especially at lower χ, when

few actual collisions occur at each time step, and we have therefore chosen to use a method that

introduces a small bias each time step, but is unbiased over many time steps. Specifically, we visit

the cells one by one and for each cell c we perform N
(c)
tc = Γ(c)

tc NcNp∆t trial collisions between one

of the Nc particles in that cell and one of the Np particles in the 3d neighboring cells. Here Γ(c)
tc

is a local trial collision rate and it may depend on the particular cell c under consideration. Note

that each of the Nc(Nc − 1) trial pairs ij where both i and j are in cell c may be chosen twice

(self collisions are rejected). Similarly, each of the Nc(Np − Nc) trial pairs where i and j are in

different cells c and c′ may be chosen twice, once when each of the cells c and c′ is considered. Also

note that it is important not to visit the cells in a fixed order during every time step. Unlike in

traditional cells, where cells are independent of each other and can be visited in an arbitrary order

(even in parallel), in I-DSMC it is necessary to ensure isotropy by visiting the cells in a random

order, different every time step.

For the Maxwell pre-collision kernel, once a pair of overlapping particles i and j is found

a collision is performed without additional rejection, therefore, we set Γ(c)
tc = χD−1Kc/2 =

3χD−1
√

kBT0/m/(4
√

π) = const, and we have divided by two because of the double counting

of each trial pair. For the traditional pre-collision kernel, and, as we shall see shortly, the SHSD

pre-collision kernel, additional rejection based on the relative velocity vij is necessary. As in the

traditional DSMC algorithm, we estimate an upper bound for the maximal value of the pre-collision

kernel K
(max)
c among the pairs under consideration and set Γ(c)

tc = χD−1K
(max)
c /2. We then per-

form an actual collision for the trial pair ij with probability

pc
ij = Kc(vij , rij)/K(max)

c ,

giving the correct collision probability for every overlapping pair of particles. For the traditional

pre-collision kernel K
(max)
c = 3v

(max)
rel /4, where v

(max)
rel is as tight an estimate of the maximum

relative speed as possible. In the traditional DSMC algorithm v
(max)
rel is a global bound obtained

by simply keeping track of the maximum particle speed vmax and taking v
(max)
rel = 2vmax [15]. In

I-DSMC, we obtain a local estimate of v
(max)
rel for each cell c that is visited, thus increasing the

acceptance rate and improving efficiency.

Algorithm 1 specified the procedure for performing collisions in the I-DSMC method. The

algorithm is to a large degree collision-kernel independent, and in particular, the same algorithm is

used for ideal and non-ideal stochastic fluids. As already explained, the size of the cells should be

chosen to be as close as possible but still larger than the particle diameter D. The time step should
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be chosen such that a typical particle travels a distance l∆t ≈ ∆t
√

kT0/m ∼ Dδt, where δt is a

dimensionless time step, which should be kept reasonably smaller than one. It is also important to

ensure that each particle does not on average undergo more than one collision per time step; we

usually keep the number of collisions per particle per time step less than one half.

Algorithm 1: Processing of stochastic collisions between overlapping particles at a time-step in

the I-DSMC method.

1. Sample a random permutation of the cell numbering P.

2. Visit the cells one by one in the random order given by P. For each cell c, do the following steps if

the number of particles in that cell Nc > 0, otherwise move on to the next cell.

3. Build a list L1 of the Nc particles in the cell and at the same time find the largest particle speed in

that cell vmax
1 . Also keep track of the second largest speed in that cell vmax

2 , which is an estimate of

the largest possible speed of a collision partner for the particle with speed vmax
1 .

4. Build a list of the Np particles in the the set of 3d cells that neighbor c, including the cell c itself

and respecting the proper boundary conditions. Also update vmax
2 if any of the potential collision

partners not in cell c have speeds greater than vmax
2 .

5. Determine the number of trial collisions between a particle in cell c and a neighboring particle by

rounding to an integer the expected value

Ntc = ΓtcNcNp∆t

in an unbiased manner, where ∆t is the timestep. Here the local trial collision rate is

Γtc =
χKmax

c

2D
,

where Kmax
c is an upper bound for the pre-collision kernel among all candidate pairs. For Maxwell

collisions Kmax
c = 3

√
kBT0/m/(2

√
π), and for traditional collisions Kmax

c = 3v
(max)
rel /4, where

v
(rel)
max = (vmax

1 + vmax
2 ) is a local upper bound on the relative velocity of a colliding pair.

6. Perform Ntc trial collisions by randomly selecting Ntc pairs of particles i ∈ L1 and j ∈ L2. For each

pair, do the following steps if i 6= j:

(a) Calculate the distance lij between the centroid of particles i and j, and go to the next pair if

lij > D.

(b) Calculate the collision kernel Kc
ij = Kc(vij , rij), and go to the next pair if Kc

ij = 0.

(c) Sample a random uniform variate 0 < r ≤ 1 and go to the next pair if Kc
ij ≤ rKmax

c (note that

this step can be skipped in Maxwell I-DSMC since Kc
ij = Kmax

c ).
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(d) Process a stochastic collision between the two particles by updating the particle velocities

by sampling the post-collision kernel Pc(v
′

ij ;vij , rij). For ideal fluids we perform the usual

stochastic DSMC collision by randomly rotating vij to obtain v
′

ij , independent of rij .

II. STOCHASTIC HARD SPHERE DYNAMICS

The traditional DSMC fluid has no internal structure and has an ideal gas equation of state

(EOS) p = PV/NkBT = 1, and are thus very compressible. As for the classical hard-sphere fluid,

the pressure of fluids with stochastic collisions consists of two parts, an unchanged kinetic contri-

bution that gives the usual ideal-gas pressure pkin = 1, and a collisional contribution proportional

to the virial pcoll ∼
〈
(vij · rij)

′ − (vij · rij)
〉
c
, where the average is over stochastic collisions and

primes denote post-collisional values. The virial vanishes for collision kernels where velocity up-

dates and positions are uncorrelated leaving only the ideal-gas kinetic contribution. In order to

introduce a non-trivial equation of state it is necessary to either give an additional displacement

∆rij to the particles that is parallel to vij , or to bias the momentum exchange ∆pij = m∆vij to be

(statistically) aligned to rij . The former approach has already been investigated in the Consistent

Boltzmann Algorithm (CBA) [20, 21]. This algorithm was named “consistent” because both the

transport coefficients and the equation of state are consistent with those of a hard-sphere fluid to

lowest order in density, unlike traditional DSMC which only matches the transport coefficients.

However, CBA is not thermodynamically consistent since it modifies the compressibility without

affecting the density fluctuations (i.e., the structure of the fluid is still that of a perfect gas).

Here we explore the option of biasing the stochastic momentum exchange based on the position

of the colliding particles. What we are trying to emulate through this bias is an effective repulsion

between overlapping particles. This repulsion will be maximized if we make ∆pij parallel to rij ,

that is, if we use the hard-sphere collision rule Pc(v
′
ij ;vij , rij) = δ(vij−2vnr̂ij), where vn = −vij ·r̂ij

is the normal component of the relative speed. Explicitly, we collide particles as if they are elastic

hard spheres of diameter equal to the distance between them at the time of the collision,

v′i =vi + vnr̂ij

v′j =vj − vnr̂ij .

Such collisions produce a positive virial only if the particles are approaching each other, i.e., if

vn > 0, therefore, we reject collisions among particles that are moving apart, Kc(vij , rij) ∼ Θ(vn),
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where Θ denotes the Heaviside function.

To avoid rejection of candidate collision pairs and thus make the algorithm most efficient, it

would be ideal if the pre-collision kernel Kc is independent of the relative velocity as for Maxwell

collisions. However, without rejection based on the normal vn or relative vr speeds, fluctuations of

the local temperature Tc would not be consistently coupled to the local pressure. Namely, without

rejection the local collisional frequency Γsc would be independent of Tc and thus the collisional

contribution to the pressure pc ∼ 〈∆vij · rij〉c ∼ Γsc

√
Tc would be pc ∼

√
Tc instead of pc ∼ Tc,

as is required for a fluid with no internal energy. Instead, as for hard spheres, we require that

Γsc ∼
√

Tc, which is satisfied if the collision kernel is linear in the magnitude of the relative

velocity. For DSMC the collisional rules can be manipulated arbitrarily to obtain the desired

transport coefficients, however, for non-ideal fluids thermodynamic requirements eliminate some of

the freedom. This important observation has not been taken into account in other algorithms that

randomize hard-sphere molecular dynamics [29].

There are two obvious choices for a pre-collision kernel that are linear in the magnitude of the

relative velocity. One is to use the relative speed, Kc ∼ vr, as in the traditional DSMC algorithm,

and the other is to use the hard-sphere pre-collision kernel, Kc ∼ vn. We have chosen to make the

collision probability linear in the normal speed vn, specifically, we take Kc = 3vnΘ(vn) to define the

Stochastic Hard-Sphere Dynamics (SHSD) fluid. This fluid is simulated by a specific form of the

I-DSMC method, in the limit of sufficiently small time steps. Specifically, in the SHSD algorithm

we use the following collision kernels in Algorithm 1:

Kc =3vnΘ(vn) and K(max)
c = 3v(rel)

max

Pc =δ(vij − 2vnr̂ij)

where vn = −vij · r̂ij .

These choices make the SHSD fluid identical to the one proposed in Ref. [28] for the purposes of

proving convergence of a microscopic model to the Navier-Stokes equations. Note that considering

particles in neighboring cells as collision partners is essential in SHSD in order to ensure isotropy

of the collisional (non-ideal) component of the pressure tensor.

A. Enskog Kinetic Theory

In this section we develop some kinetic equations for the SHSD fluid that are inspired by the

Enskog theory of hard-sphere fluids. Remarkeably, it turns out that these sorts of kinetic equations
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have already been studied in the literature for purely theoretical purposes.

1. BBGKY Hierarchy

The full Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy of Master equations de-

scribing the SHSD fluid is derived in Ref. [28]. Specifically, the evolution of the s-particle distri-

bution function fs(t; r1,v1, . . . , rs,vs) is governed by

∂fs

∂t
+

s∑
i=1

vi ·∇rifs =
3χ

D

∫ D

0
dx

∫
R3

dvj

∫
S2

+

de x2
s∑

i=1

vn

[
fs+1(t; r1,v1, . . . , ri,v

′
i, . . . , rs,vs, ri + xr̂ij ,v

′
j)− fs+1(t; r1,v1, . . . , ri,vi, . . . , rs,vs, ri − xr̂ij ,vj)

]
,

(1)

which takes into account the contribution from collisions of one of the s particles, particle i, with

another particle j that is at a distance rij = xD away, 0 ≤ x ≤ 1. Here S2
+ denotes the fraction

of the unit sphere for which vn = −r̂ij · (vi − vj) ≥ 0, and v′i = vi + vnr̂ij and v′j = vj − vnr̂ij .

Just like the BBGKY hierarchy for Hamiltonian fluids, Eqs. (1) are exact, however, they form an

infinite unclosed system in which the (s + 1)-particle distribution function appears in the equation

for the s-particle distribution function. As usual, we need to make an anzatz to truncate and close

the system, as we do next.

2. Transport Properties

The hydrodynamics of the SHSD fluid is well-described by a kinetic equation for the single-

particle probability distribution f(t, r,v) ≡ f1(t; r,v) obtained by making the common molecular

chaos assumption about the two-particle distribution function,

f2(t; r1,v1, r2,v2) = g2(r1, r2;n)f(t, r1,v1)f(t, r2,v2),

where g2(ri, rj ;n) is the non-equilibrium pair distribution function that is a functional of the local

number density n(r). At global equilibrium n(r) = const and g2 ≡ g2(rij) depends only on the

radial distance once the equilibrium density n and collision rate χ are specified. Substituting the

above assumption for f2in the first equation of the BBGKY hierarchy (1), we get a stochastic

revised Enskog equation of the form studied in Ref. [26],
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∂f(t, r,v)
∂t

+ v ·∇rf(t, r,v) =
3χ

D

∫ D

0
dx

∫
R3

dw

∫
S2

+

de

x2
[
g2(r, r + xe;n)f(t, r,v′)f(t, r + xe,w′)− g2(r, r − xe;n)f(t, r,v)f(t, r − xe,w)

]
vn, (2)

where vn = −e · (v −w) ≥ 0, v′ = v + evr and w′ = w − evr.

The standard second-order Chapman-Enskog expansion has been carried out for the “stochastic

Enskog” equation of the same form as Eq. (2) in Ref. [26], giving estimates of the equation of

state (EOS) p = PV/NkBT , the diffusion coefficient ζ, the shear η and bulk ηB viscosities, and

thermal conductivity κ of the SHSD fluid. The expressions in Ref. [26] ultimately express the

transport coefficients in terms of various dimensionless integer moments of the pair correlation

function g2(x = r/D), xk =
∫ 1
0 xkg2(x)dx, specifically,

p− 1 =12φχx3, (3)

ζ/ζ0 =
√

π

48φχx2
, (4)

ηB/η0 =
48φ2χx4

π3/2
, (5)

η/η0 =
5

48
√

πχx2
(1 +

24φχx3

5
)2 +

3
5
ηB, and (6)

κ/κ0 =
25

64
√

πχx2
(1 +

36φχx3

5
)2 +

3
2
ηB, (7)

where ζ0 = D
√

kT/m, η0 = D−2
√

mkT and κ0 = kD−2
√

kT/m are natural units. These equations

are very similar to the ones in the Enskog theory of the hard-sphere fluid except that various

coefficients are replaced with moments of g2(x). In order to use these equations, however, we need

to have a good approximation to the pair correlation function, i.e., to the structure of the SHSD

fluid. It is important to point out that Eq. (3) is exact as it can be derived directly from the

definition of the collisional contribution to the pressure.

B. Pair Correlation Function

In this section we study the structure of the SHSD fluid, theoretically at low densities, and then

numerically at higher densities. We find, surpisingly, that there is a thermodynamic correspondence

between the stochastic SHSD fluid and a deterministic penetrable-sphere fluid.
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1. Low Densities

In order to understand properties of the SHSD fluid as a function of the density φ and the cross-

section factor χ, we first consider the equilibrium pair correlation function g2(r) at low densities,

where correlations higher than pairwise can be ignored. We consider the cloud of point walkers

ij representing the N(N − 1)/2 pairs of particles, each at position r = ri − rj and with velocity

v = vi − vj . If one of these walkers is closer than D to the origin, r ≤ D, and is approaching

the origin, vn > 0, it reverses its radial speed as a stochastic process with a time-dependent rate

Γ = |vn|Γ0, where Γ0 = 3χ/D is the collision frequency. A given walker corresponding to pair ij

also undergoes stochastic spatially-unbiased velocity changes with some rate due to the collisions

of i with other particles. At low densities we can assume these additional collisions to merely

thermalize the velocities to a Maxwell-Boltzmann distribution but not otherwise couple with the

radial dependence of the one-particle distribution function f(v, r) for the N(N − 1)/2 walkers.

Inside the core r ≤ D this distribution of pair walkers satisfies a kinetic equation

∂f

∂t
− vn

∂f

∂r
=

 −Γf if vn ≥ 0

Γf if vn < 0
= −Γ0vnf.

At equilibrium, ∂f/∂t = 0 and vn cancels on both sides, consistent with choosing collision proba-

bility linear in |vn|, giving ∂f/∂r = 3χD−1f . At equilibrium, the distribution of the point walkers

in phase space ought to be of the separable form f(v, r) = f(vn, r) ∼ g2(r) exp(−mv2
n/4kT ), giving

dg2(r)/dr = 3χD−1g2(r) for r ≤ D and zero otherwise, with solution

g2(x = r/D) =

 exp [3χ(x− 1)] for x ≤ 1

1 for x > 1
(8)

Indeed, numerical experiments confirmed that at sufficiently low densities the equilibrium g2 for

the SHSD fluid has the exponential form (8) inside the collision core. From statistical mechanics

we know that for a deterministic Hamiltonian particle system with a pairwise potential U(r) at low

density gU
2 = exp[−U(r)/kT ]. Therefore, the low density result (8) is consistent with an effective

linear core pair potential

Ueff (r)/kT = 3χ(1− x)Θ(1− x). (9)

Note that this repulsive potential is similar to the quadratic core potential used in DPD and strictly

vanishes outside of the overlap region, as expected. Also note that the collision parameter χ plays

the role that U(0)/kT plays in the system of penetrable spheres interacting with a linear core

pairwise potential.
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As pointed out earlier, Eq. (3) is exact. At the same time, it is equivalent to the virial theorem

for the linear core potential (constant derivative). Therefore, if the pair correlation functions of

SHSD and the linear core fluid are truly identical, the pressure of the SHSD fluid is identically equal

to that of the corresponding penetrable sphere system. As a consequence, thermodynamic consis-

tency between the structure (g2(x) and S(k)) and equation-of-state for SHSD (p(φ)) is guaranteed

to be exact.

2. Equivalence to the Linear Core Penetrable Sphere System

Remarkably, we find numerically that the effective potential (9) can predict exactly g2(x) at all

densities. In fact, we have numerically observed that the SHSD fluid behaves thermodynamically

identically to a system of penetrable spheres interacting with a linear core pairwise potential for

all φ and χ. Figure 1 shows a comparison between the pair correlation function of the SHSD fluid

on one hand, and a Monte Carlo calculation using the linear core pair potential on the other, at

several densities. Also shown is a numerical solution to the hypernetted chain (HNC) integral

equations for the linear core system, inspired by its success for the Gaussian core model [25]. The

excellent agreement at all densities permits the use of the HNC result in practical applications,

notably the calculation of the transport coefficients via the Enskog-like kinetic theory presented

in Section II A 2. We also show the static structure factor S(k) in Fig. 1, and find very good

agreement between numerical results and the HNC theory, as expected since S(k) can be expressed

as the Fourier transform of h(r) = g2(r)− 1.

Interestingly, in the limit χ → ∞ the SHSD algorithm reduces to hard-sphere (HS) molecular

dynamics. In fact, if the density φ is smaller than the freezing point for the HS system, the structure

of the SHSD fluid approaches, as χ increases, that of the HS fluid. For higher densities, if χ is

sufficiently high, crystallization is observed in SHSD, either to the usual hard-sphere crystals if φ is

lower than the close-packing density, or if not, to an unusual partially ordered state with multiple

occupancy per site, typical of weakly repulsive potentials [30]. Monte Carlo simulations of the

linear core penetrable sphere system show identical freezing behavior with SHSD, confirming the

surprising equivalence even at non-fluid densities. This points to a conjecture that the (unique)

stationary solution to the BBGKY hierarchy (1) is the equilibrium Gibbs distribution,

fE
s =

∏s
i=1 M(vi)

ZN

∫
rs+1

. . .

∫
rN

exp

−β
∑
i<j

Ueff (rij)

 drs+1 . . . drN ,

where M is a Maxwellian.
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Figure 1: (Left) Equilibrium pair correlation function of the SHSD fluid (solid symbols), compared to MC

(open symbols) and numerical solution of the HNC equations (solid lines) for the linear core system, at

various densities and χ = 1. The low-density approximation corresponding to Eq. (8) is also shown. (Right)

The corresponding static structure factors from SHSD simulations (solid symbols) and HNC calculations

(solid lines).

III. RESULTS

In this Section we perform several numerical experiments with the SHSD algorithm. Firstly, we

compare the theoretical predictions for the transport properties of the SHSD fluid based on the HNC

theory for the linear core penetrable sphere system with results from particle simulations. We then

compute dynamic structure factors and compare them to predictions of fluctuating hydrodynamics.

Finally, we study the motion of a Brownian bead suspended in an SHSD fluid.

A. Transport Coefficients

The equation of state of the SHSD fluid for a given χ is P = p(φ)NkBT/V , where p(φ) is given

in Eq. (3). According to statistical mechanics, the structure factor at the origin, is equal to the

isothermal compressibility, that is,

S0 = S(ω = 0, k = 0) = c̃−2
T = (p + φdp/dφ)−1

where cT = c̃T

√
kBT/m is the isothermal speed of sound. In the inset in the top part of Fig. 2, we

directly demonstrate the thermodynamic consistency of SHSD by comparing the compressibility

calculated through numerical differentiation of the pressure, to the structure factor at the origin.

The pressure is easily measured in the particle simulations by keeping track of the total collisional

momentum exchange during a long period. The structure factor is obtained through a temporal
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average of a Fast Fourier Transform approximation to the discrete Fourier Transform of the particle

positions ‖
∑

i exp(−ik · ri)‖2. The value S(k = 0) is estimated by fitting a parabolic dependence

for small k and extrapolating to k = 0.
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S(
k=
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Figure 2: Normalized equation of state (p − 1)/(χφ) for the SHSD fluid at several cross-section factors

χ (different symbols) compared to theoretical predictions based on the virial theorem (3) with the HNC

approximation to g2(x) (solid lines). The inset compares the compressibility (pressure derivative, dashed

lines) to the structure factor at the origin S(k → 0) (symbols), measured using a direct Fourier transform

of the particle positions for small k and extrapolating to k = 0.

Having established that the HNC closure provides an excellent approximation g
(HNC)
2 (x) for the

pair correlation function of the SHSD fluid, we can obtain estimates for the transport coefficients by

calculating the first four moments of g
(HNC)
2 (x) and substituting them in the results of the Enskog

kinetic theory presented in Section II A 2. In Figure 3 we compare the theoretical predictions for

the diffusion coefficient ζ and the viscosity η to the ones directly calculated from SHSD particle

simulations. We measure ζ directly from the average mean square displacement of the particles. We

estimate η by calculating the mean flow rate in Poiseuille parabolic flow between two thermal hard

walls due to an applied constant force on the particles2. Surprisingly, good agreement is found for

2 Similar results are obtained by calculating the viscous contributions to the kinetic and collisional stress tensor
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the shear viscosity at all densities. Similar matching was observed for the thermal conductivity κ.

The corresponding results for the diffusion coefficient show significant (∼ 25%) deviations for the

self-diffusion coefficient at higher densities because of corrections due to higher-order correlations.
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Figure 3: Comparison between numerical results for SHSD at several collision frequencies (different symbols)

with predictions based on the stochastic Enskog equation using the HNC approximation to g2(x) (solid

lines). The low-density approximations are also indicated (dashed lines). (Left) The normalized shear

viscosity η/η0 at high and low densities (inset), as measured using an externally-forced Poiseuille flow.

There are significant corrections (Knudsen regime) for large mean free paths (i.e., at low densities and low

collision rates). (Right) The normalized diffusion coefficient ζ/(χφζ0), as measured from the mean square

displacement of the particles.

B. Dynamic Structure Factors

The hydrodynamics of the spontaneous thermal fluctuations in the SHSD fluid is expected to

be described by the Landau-Lifshitz Navier-Stokes (LLNS) equations linearized around a reference

equilibrium state U0 = (ρ0,v0 = 0, T0) [31, 32]. For the SHSD fluid the linearized equation of

state is

P = p(φ)
NkBT

V
≈ (p0 + c̃2

T

ρ

ρ0
+ p0

T

T0
)ρ0c

2
0,

and there is no internal energy contribution to the energy density,

e ≈ 3
2

NkBT

V
= e0 + ρcvT0 + ρ0cvT,

in non-equilibrium simulations of Couette shear flow. This kind of calculation additionally gives the split in the
viscosity between kinetic and collisional contributions.
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where p0 = p(φ0), c0 = kBT/m, and cv = 3kB/2m, giving an adiabatic speed of sound cs = c̃sc0,

where c̃2
s = c̃2

T +2p2/3. Therefore, for one-dimensional flows the LLNS equations for the fluctuating

field U = (ρ0 + ρ, v, T0 + T ) take the form


∂tρ

∂tv

∂tT

 = − ∂

∂x


ρ0v

c2
T ρ−1

0 ρ + p0c
2
0T

−1
0 T

p0c
2
0c
−1
v v

 +
∂

∂x


0

ρ−1
0 η0vx

ρ−1
0 c−1

v κ0Tx

 +
∂

∂x


0

ρ−1
0

√
2η0kBT0W

(v)

ρ−1
0 c−1

v T0

√
2κ0kBW (T )

 ,

(10)

where W (v) and W (T ) are independent spatio-temporal white noise Gaussian fields.

By solving these equations in the Fourier wavevector-frequency domain for Û(k, ω) and perform-

ing an ensemble average over the fluctuating stresses we can obtain the spatio-temporal correlations

(covariance) of the fluctuating fields. We express these correlations in terms of the 3×3 symmetric

positive-definite hydrodynamic structure factor matrix SH(k, ω) =
〈
ÛÛ

?
〉

[5]. The hydrostatic

structure factor matrix SH(k) is obtained by integrating SH(k, ω) over all frequencies,

SH(k) =


ρ0c

−2
T kBT0 0 0

0 ρ−1
0 kBT0 0

0 0 ρ−1
0 c−1

v kBT 2
0

 . (11)

We use SH(k) for an ideal gas (i.e., for p0 = 1, c̃T = 1) to non-dimensionalize SH(k, ω), for

example, we express the spatio-temporal cross-correlation between density and velocity through

the dimensionless hydrodynamic structure factor

Sρ,v(k, ω) =
(
ρ0c

−2
0 kBT0

)− 1
2
(
ρ−1
0 kBT0

)− 1
2 〈ρ̂(k, ω)v̂?(k, ω)〉 .

For the non-ideal SHSD fluid the density fluctuations have a spectrum

Sρ(k) =
(
ρ0c

−2
0 kBT0

)−1 〈ρ̂(k)ρ̂?(k)〉 = c̃−2
T ,

which only captures the small k behavior of the full (particle) structure factor S(k) (see Fig. 1), as

expected of a continuum theory that does not account for the structure of the fluid. Typically only

the density-density dynamic structure factor is considered because it is accessible experimentally

via light scattering measurements and thus most familiar. However, in order to fully access the

validity of the full LLNS system one should examine the dynamic correlations among all pairs of

variables. The off-diagonal elements of the static structure factor matrix SH(k) vanish because the

primitive hydrodynamic variables are instantaneously uncorrelated, however, they have non-trivial
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Figure 4: Hydrodynamic structure factors as predicted by the LLNS equations (solid lines) and computed

from particle simulations (symbols, collision diameter D = 0.04). For the SHSD fluid we obtain the transport

coefficients from the Enskog theory with the HNC approximation to g2, while for the Maxwell I-DSMC fluid

we numerically estimated the viscosity and thermal conductivity. (Left) Normalized density fluctuations

c̃2
T Sρ(k, ω) for k ≈ 1.75 for an ideal Maxwell I-DSMC (φ = 0.5, χ = 0.62) and two non-ideal SHSD (φ = 0.5

and φ = 1, χ = 1) fluids, showing the shifting of the side Brillouin peaks to higher frequencies as the

compressibility is reduced. (Right) Selected diagonal and off-diagonal elements of the non-dimensionalized

hydrodynamic structure factor matrix for a larger k ≈ 12.6 for an SHSD fluid at φ = 1, χ = 1, giving

a complete picture of the spatio-temporal correlations between all of the different pairs of hydrodynamic

variables.

dynamic correlations visible in the off-diagonal elements of the dynamic structure factor matrix

SH(k, ω).

In Fig. 4 we compare theoretical and numerical results the hydrodynamic structure factors

for the SHSD fluid with χ = 1 at two densities for a small and a medium k value [kD/(2π) ≈

0.01 and 0.07]. In this figure we show selected elements of SH(k, ω) as predicted by the analytical

solution to Eqs. (10) with parameters obtained by using the HNC approximation to g2 in the

Enskog kinetic theory presented in Section IIA 2. Therefore, for SHSD the theoretical calculations

of SH(k, ω) do not use any numerical inputs from the particle runs. We also show hydrodynamic

structure factors obtained from particle simulations in a quasi-one-dimensional setup in which the

simulation cell was periodic and long along the x axis, and divided into hydrodynamic cells of

length 5D. Finite-volume averages of the hydrodynamic conserved variables were then calculated

for each cell every 10 time steps and a Fast Fourier Transform used to obtain hydrodynamic

structure factors for several wavenumbers. Figure 4 shows very good agreement between theory

and numerics, and clearly shows the shifting of the two symmetric Brillouin peaks at ω ≈ csk

toward higher frequencies as the compressibility of the SHSD fluid is reduced and the speed of
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sound increased. The width of the central Rayleigh peak at ω = 0 is also well-predicted for a wide

range of k values, demonstrating that the SHSD fluid shows the expected fluctuating hydrodynamic

behavior.

C. Brownian Walker VACF

As an illustration of the correct hydrodynamic behavior of the SHSD fluid and the significance

of compressibility, we study the velocity autocorrelation function (VACF) C(t) = 〈vx(0)vx(t)〉 for a

single neutrally-buoyant hard sphere of mass M and radius R suspended in an SHSD fluid of mass

density ρ. This problem is relevant to the modeling of polymer chains or (nano)colloids in solution,

and led to the discovery of a long power-law tail in C(t) [33, 34]. Here the fluid particles interact

via stochastic collisions, exactly as in I-DSMC. The interaction between fluid particles and the

bead is treated as if the SHSD particles are hard spheres of diameter Ds, chosen to be somewhat

smaller than their interaction diameter with other fluid particles (specifically, we use Ds = D/4)

for computational efficiency reasons, using an event-driven algorithm [35]. Upon collision with the

bead the relative velocity of the fluid particle is reversed in order to provide a no-slip condition at

the surface of the suspended sphere [33, 35] (slip boundaries give qualitatively identical results).

For comparison, an ideal I-DSMC fluid of comparable viscosity is also simulated.

Theoretically, C(t) has been calculated from the linearized (compressible) fluctuating Navier-

Stokes (NS) equations [33]. The results are analytically complex even in the Laplace domain,

however, at short times an inviscid compressible approximation applies. At large times the com-

pressibility does not play a role and the incompressible NS equations can be used to predict the long-

time tail. At short times, t < tc = 2R/cs, the major effect of compressibility is that sound waves

generated by the motion of the suspended particle carry away a fraction of the momentum, so that

the VACF quickly decays from its initial value C(0) = kT/M to C(tc) ≈ kT/Meff , where Meff =

M +2πR3ρ/3. At long times, t > tvisc = 4ρR2
H/3η, the VACF decays as in an incompressible fluid,

with an asymptotic power-law tail (kT/m)(8
√

3π)−1(t/tvisc)−3/2, in disagreement with predictions

based on the Langevin equation (Brownian dynamics), C(t) = (kT/m) exp (−6πRHηt/m). We

have estimated the effective (hydrodynamic) colloid radius RH from numerical measurements of

the Stokes friction force F = −6πRHηv and found it to be somewhat larger than the hard-core

collision radius R + Ds/2.

In Fig. 5 numerical results for the VACF for an I-DSMC fluid and an SHSD fluid at two

different densities are compared to the theoretical predictions. It is seen, as predicted, that the
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Figure 5: The velocity autocorrelation function for a neutrally buoyant hard sphere suspended in a non-ideal

SHSD (χ = 1) fluid at two densities (symbols), as well as an ideal Maxwell I-DSMC fluid (φ = 0.5, χ = 0.62,

symbols), at short and long times (inset). For the more compressible (less viscous) fluids the long time tails

are statistically measurable only up to t/tvisc ≈ 5. The theoretical predictions based on the inviscid, for

short times, or incompressible, for long times, Navier-Stokes equations are also shown (lines). The diameter

of the nano-colloidal particle is only 2.5D, although we have performed simulations using larger spheres as

well with very similar (but less accurate) results. Since periodic boundary conditions were used we only

show the tail up to about the time at which sound waves generated by its periodic images reach the particle,

tL = L/cs.

compressibility or the sound speed cs, determines the early decay of the VACF. The exponent of

the power-law decay at large times is also in agreement with the hydrodynamic predictions. The

coefficient of the VACF tail agrees reasonably well with the hydrodynamic prediction for the less

dense fluids, however, there is a significant deviation of the coefficient for the densest fluids, perhaps

due to ordering of the fluid around the suspended sphere, not accounted for in continuum theory.

In order to study this discrepancy in further detail one would need to perform simulations with a

much larger bead. This is prohibitively expensive with the serial event-driven algorithm used here

[35] and requires either parallelizing the code or using a hybrid particle-continuum method [36],

which we leave for future work.
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IV. CONCLUSIONS

We have sucessfully generalized the traditional DSMC algorithm for simulating rare gas flows to

flows of dense non-ideal fluids. Constructing such a thermodynamically-consistent Stochastic Hard

Sphere Dynamics (SHSD) algorithm required first eliminating the grid artifacts from traditional

DSMC. These artifacts are small in traditional DSMC simulations because the collisional cell size

is kept significantly smaller than the mean free path [37], but become pronounced when collision-

dominated flows are simulated because the collisional-stress tensor is not isotropic. Our Isotropic

DSMC (I-DSMC) method is a grid free DSMC variant with pairwise spherically-symmetric stochas-

tic interactions between the particles, just as classical fluids simulated by molecular dynamics (MD)

use a pairwise spherically-symmetric deterministic interaction potential. The I-DSMC method can

therefore be viewed as a transition from the DSMC method, suitable for rarefied flows, to the MD

method, suitable for simulating dense liquids (and solids).

It has long been apparent that manipulating the stochastic collision rules in DSMC can lead

to a wide range of fluid models, including non-ideal ones [20, 38]. It has also been realized that

DSMC, as a kinetic Monte Carlo method, is not limited to solving the Boltzmann equation but

can be generalized to Enskog-like kinetic equations [22, 23]. However, what has been so far elusive

is to construct a non-ideal stochastic fluid model that is thermodynamically consistent, meaning

that the fluid structure and the equation of state are consistent with each other as required by

statistical mechanics. We overcame this hurdle here by constructing stochastic collision kernels in

I-DSMC to be as close as possible to those of the classical hard-sphere deterministic system. Thus,

in the SHSD algorithm randomly chosen pairs of approaching and overlapping particles undergo

collisions as if they were hard spheres of variable diameter.

We demonstrated the consistent thermodynamic behavior of the SHSD system by observing that

it has identical structure and thermodynamic properties to a Hamiltonian system of penetrable

spheres interacting with a linear core potential, even up to solid densities. We found that at

fluid densities the pair correlation function g2(r) of the linear core system is well-described by the

approximate HNC closure, enabling us to obtain moments of g2(r). These moments were then used

as inputs in a modified Chapman-Enskog calculation to obtain excellent estimates of the equation

of state and transport coefficients of the SHSD fluid over a wide range of densities. We do not yet

have a complete theoretical understanding of our surprising finding that the SHSD system behaves

thermodynamically identically to the linear core system. An important open question remains

whether by choosing a different collision kernel one can obtain stochastic fluids corresponding to
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Hamiltonian systems of penetrable spheres interacting with effective pair potentials Ueff (r) other

than the linear core potential.

The SHSD algorithm is similar in nature to DPD and has a similar computational complexity.

The essential difference is that DPD has a continuous-time formulation (a system of stochastic

ODEs), where as the SHSD dynamics is discontinuous in time (Master Equation). This is similar

to the difference between MD for continuous potentials and discontinuous potentials. Just as

DSMC is a stochastic alternative to hard-sphere MD for low-density gases, SHSD is a stochastic

modification of hard-sphere MD for dense gases. On the other hand, DPD is a modification of MD

for smooth potentials to allow for larger time-steps and a conservative thermostat.

A limitation of SHSD is that for reasonable values of the collision frequency (χ ∼ 1) and density

(φ ∼ 1) the fluid is still relatively compressible compared to a dense liquid, S(k = 0) = c̃−2
T > 0.1.

Indicative of this is that the diffusion coefficient is large relative to the viscosity as it is in typical

DPD simulations, so that the Schmidt number Sc = η(ρζ)−1 is less than 10 instead of being on the

order of 100-1000. Achieving higher c̃T or Sc requires high collision rates (for example, χ ∼ 104

is used in Ref. [39]) and appropriately smaller time steps to ensure that there is at most one

collision per particle per time step, and this requires a similar computational effort as in hard-

sphere molecular dynamics at a comparable density. At low and moderate gas densities the SHSD

algorithm is not as efficient as DSMC at a comparable collision rate. However, for a wide range

of compressibilities, SHSD is several times faster than the alternative deterministic Event-Driven

MD (EDMD) for hard spheres [24, 40]. Furthermore, SHSD has several important advantages over

EDMD, in addition to its simplicity:

1. SHSD has several controllable parameters that can be used to change the transport coeffi-

cients and compressibility, notably the usual density φ but also the cross-section factor χ

and others3, while EDMD only has density.

2. SHSD is time-driven rather than event-driven thus allowing for easy parallelization.

3. SHSD can be more easily coupled to continuum hydrodynamic solvers, just like ideal-gas

DSMC [41] and DPD [42, 43]. Strongly-structured particle systems, such as fluids with strong

interparticle repulsion (e.g., hard spheres), are more difficult to couple to hydrodynamic

3 For example, one can combine rejection-free Maxwell collisions with hard-sphere collisions in order to tune the
viscosity without affecting the compressibility. The efficiency is significantly enhanced when the fraction of accepted
collisions is increased, however, the compressibility is also increased at a comparable collision rate.
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solvers [44] than ideal fluids, such as MPCD or (I-)DSMC, or weakly-structured fluids, such

as DPD or SHSD fluids.
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Appendix A: I-DSMC AT LOW DENSITIES

The I-DSMC algorithm was designed with dense fluid flows in mind, that is, collision-dominated

flows where the mean free path is comparable to the collision range. In the traditional DSMC

algorithm the collision range is the cell length Lc, and in I-DSMC the collision range is the particle

diameter D.
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